Simple version now working just as good as that complex

This commit is contained in:
BOTAlex 2025-01-23 04:25:53 +01:00
parent 334ea6feaa
commit a9d468d87c
1 changed files with 53 additions and 80 deletions

View File

@ -10,18 +10,27 @@
#define JOYSTICK_PIN 63 #define JOYSTICK_PIN 63
struct CharMapping { struct CharMapping {
char character; char character;
int value; int value;
}; };
// [X, Y, Head] TODO: struct Stepper {
#define NUM_MOTORS 3 uint8_t enPin;
static const uint8_t STEP_PINS[NUM_MOTORS] = {54, 60, 36}; uint8_t dirPin;
static const uint8_t DIR_PINS[NUM_MOTORS] = {55, 61, 34}; uint8_t stepPin;
static const uint8_t EN_PINS[NUM_MOTORS] = {38, 56, 30}; bool timerEnabled;
bool motorsEnabled[NUM_MOTORS] = {false, false, false}; bool motorEnabled;
CharMapping mappings[] = {{'x', 0}, {'y', 1}, {'e', 2}}; char axis;
uint8_t selectedIndex = 1; };
// [X, Y, Head]
#define NUM_STEPPERS 3
Stepper steppers[NUM_STEPPERS] = {
{38, 55, 54, false, false, 'x'},
{56, 61, 60, false, false, 'y'},
{30, 34, 36, false, false, 'e'},
};
// Critical range for detecting joystick movement // Critical range for detecting joystick movement
static const int JOY_CRITICAL_POINT = 25; static const int JOY_CRITICAL_POINT = 25;
@ -63,108 +72,72 @@ void IRAM_ATTR timer3ISR()
// Timers for stepping the motors // Timers for stepping the motors
ISR(TIMER3_COMPA_vect) { ISR(TIMER3_COMPA_vect) {
if (motorsEnabled[0]) { if (steppers[0].timerEnabled) {
digitalWrite(STEP_PINS[0], !digitalRead(STEP_PINS[0])); digitalWrite(steppers[0].stepPin, !digitalRead(steppers[0].stepPin));
} }
} }
ISR(TIMER4_COMPA_vect) { ISR(TIMER4_COMPA_vect) {
if (motorsEnabled[1]) { if (steppers[1].timerEnabled) {
digitalWrite(STEP_PINS[1], !digitalRead(STEP_PINS[1])); digitalWrite(steppers[1].stepPin, !digitalRead(steppers[1].stepPin));
} }
} }
ISR(TIMER5_COMPA_vect) { ISR(TIMER5_COMPA_vect) {
if (motorsEnabled[2]) { if (steppers[2].timerEnabled) {
digitalWrite(STEP_PINS[2], !digitalRead(STEP_PINS[2])); digitalWrite(steppers[2].stepPin, !digitalRead(steppers[2].stepPin));
} }
} }
#endif #endif
int charToMotorIndex(char c) {
for (int i = 0; i < NUM_MOTORS; i++) {
if (mappings[i].character == c) {
return mappings[i].value;
}
}
return -1; // Not found
}
void updateInput() {
int joystickValueRaw = analogRead(JOYSTICK_PIN);
int joystickValue = map(joystickValueRaw, 0, 1023, 0, 100);
bool leftMovement = (joystickValue > (100 - JOY_CRITICAL_POINT));
bool rightMovement = (joystickValue < JOY_CRITICAL_POINT);
motorsEnabled[selectedIndex] = leftMovement || rightMovement;
digitalWrite(EN_PINS[selectedIndex], !motorsEnabled[selectedIndex]); // Inverted for some reason
digitalWrite(DIR_PINS[selectedIndex], leftMovement);
// // Debug
// Serial.print("Raw: "); Serial.print(joystickValueRaw);
// Serial.print(" | Mapped: "); Serial.print(joystickValue);
// Serial.print(" | Left: "); Serial.print(leftMovement);
// Serial.print(" | Right: "); Serial.print(rightMovement);
// Serial.print(" | Motor: "); Serial.println(motorsEnabled[selectedIndex] ? "ON" : "OFF");
}
void ExecuteCommand(void *params){ void ExecuteCommand(void *params){
ZCommand receivedValue = *((ZCommand *)params); ZCommand receivedValue = *((ZCommand *)params);
} }
int getStepperIndex(const char axis){
for (size_t i = 0; i < NUM_STEPPERS; i++)
{
if (steppers[i].axis == axis) {
Serial.print("Found motor: ");
Serial.println(i);
return i;
}
}
return -1;
}
void MoveMotor(void *params) { void MoveMotor(void *params) {
MotorMoveParams *motorParams = ((MotorMoveParams *) params); MotorMoveParams *motorParams = ((MotorMoveParams *) params);
char motorChar = motorParams->motorChar; char motorChar = motorParams->motorChar;
float moveTimeMs = motorParams->moveTimeMs; float moveTimeMs = motorParams->moveTimeMs;
int index = charToMotorIndex(motorChar);
int isBackwards = signbit(moveTimeMs); // Negative means move backwards, positive means move forward. int isBackwards = signbit(moveTimeMs); // Negative means move backwards, positive means move forward.
int index = getStepperIndex(motorChar);
Stepper *currentStepper = &steppers[index];
// Enable motor and set direction // Enable motor and set direction
motorsEnabled[index] = true; Serial.println("Start motor.");
digitalWrite(EN_PINS[index], !motorsEnabled[index]); // Inverted for some reason currentStepper->motorEnabled = true;
digitalWrite(DIR_PINS[index], isBackwards); currentStepper->timerEnabled = true;
digitalWrite(currentStepper->enPin, !(currentStepper->motorEnabled)); // Inverted for some reason
digitalWrite(currentStepper->dirPin, isBackwards);
vTaskDelay(pdMS_TO_TICKS(moveTimeMs)); vTaskDelay(pdMS_TO_TICKS(moveTimeMs));
// Stop motor // Stop motor
motorsEnabled[index] = false; Serial.println("Stop motor.");
digitalWrite(EN_PINS[index], !motorsEnabled[index]); // Inverted for some reason currentStepper->motorEnabled = false;
currentStepper->timerEnabled = false;
digitalWrite(currentStepper->enPin, !(currentStepper->motorEnabled)); // Inverted for some reason
vTaskDelete(NULL); vTaskDelete(NULL);
} }
void MotorControlTask(void *params) {
while (true) {
updateInput();
// Check if there is serial data available
while (Serial.available() > 0) {
String input = Serial.readStringUntil('\n'); // Read input until newline
input.trim(); // Remove any whitespace
// Check if the input matches the expected format ":0", ":1", or ":2"
if (input.length() == 2 && input[0] == ':') {
char indexChar = input[1];
if (indexChar >= '0' && indexChar <= '2') {
selectedIndex = indexChar - '0'; // Convert character to integer
Serial.print("Selected index set to: ");
Serial.println(selectedIndex);
} else {
Serial.println("Invalid index! Use :0, :1, or :2");
}
}
}
vTaskDelay(pdMS_TO_TICKS(50)); // Poll every 50ms
}
}
// Configures Timer1 for compare match interrupts // Configures Timer1 for compare match interrupts
void setupMotor() { void setupMotor() {
for (size_t i = 0; i < NUM_MOTORS; i++) for (size_t i = 0; i < NUM_STEPPERS; i++)
{ {
pinMode(STEP_PINS[i], OUTPUT); pinMode(steppers[i].enPin, OUTPUT);
pinMode(DIR_PINS[i], OUTPUT); pinMode(steppers[i].dirPin, OUTPUT);
pinMode(EN_PINS[i], OUTPUT); pinMode(steppers[i].stepPin, OUTPUT);
} }
#ifdef ESP32 #ifdef ESP32