CypernBuilding/Assets/SampleScenes/Shaders/Skybox-Procedural.shader

245 lines
7.7 KiB
GLSL

// Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
Shader "Skybox/Procedural" {
Properties {
_SunTint ("Sun Tint", Color) = (1, 1, 1, 1)
_SunStrength ("Sun Strength", Float) = 1.0
_Color ("Atmosphere Tint", Color) = (.5, .5, .5, 1)
_GroundColor ("Ground", Color) = (.369, .349, .341, 1)
_HdrExposure("HDR Exposure", Float) = 1.3
}
SubShader {
Tags { "Queue"="Background" "RenderType"="Background" "PreviewType"="Skybox" }
Cull Off ZWrite Off
Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
uniform half _HdrExposure; // HDR exposure
uniform half3 _GroundColor;
half3 _Color;
half3 _SunTint;
half _SunStrength;
// RGB wavelengths
#define GAMMA .454545
static const float MN = 2;
static const float MX = .7;
#define WR (0.65*lerp(MN, MX, pow(_Color.r,GAMMA)))
#define WG (0.57*lerp(MN, MX, pow(_Color.g,GAMMA)))
#define WB (0.475*lerp(MN, MX, pow(_Color.b,GAMMA)))
//#define WR pow(0.65,GAMMA)
//#define WG pow(0.57,GAMMA)
//#define WB pow(0.475,GAMMA)
static const float3 kInvWavelength = float3(1.0 / (WR*WR*WR*WR), 1.0 / (WG*WG*WG*WG), 1.0 / (WB*WB*WB*WB));
#define OUTER_RADIUS 1.025
static const float kOuterRadius = OUTER_RADIUS;
static const float kOuterRadius2 = OUTER_RADIUS*OUTER_RADIUS;
static const float kInnerRadius = 1.0;
static const float kInnerRadius2 = 1.0;
static const float kCameraHeight = 0.0001;
#define kRAYLEIGH 0.0025 // Rayleigh constant
#define kMIE 0.0010 // Mie constant
#define kSUN_BRIGHTNESS 20.0 // Sun brightness
static const float kKrESun = kRAYLEIGH * kSUN_BRIGHTNESS;
static const float kKmESun = kMIE * kSUN_BRIGHTNESS;
static const float kKr4PI = kRAYLEIGH * 4.0 * 3.14159265;
static const float kKm4PI = kMIE * 4.0 * 3.14159265;
static const float kScale = 1.0 / (OUTER_RADIUS - 1.0);
static const float kScaleDepth = 0.25;
static const float kScaleOverScaleDepth = (1.0 / (OUTER_RADIUS - 1.0)) / 0.25;
static const float kSamples = 2.0; // THIS IS UNROLLED MANUALLY, DON'T TOUCH
#define MIE_G (-0.990)
#define MIE_G2 0.9801
struct appdata_t {
float4 vertex : POSITION;
};
struct v2f {
float4 pos : SV_POSITION;
half3 rayDir : TEXCOORD0; // Vector for incoming ray, normalized ( == -eyeRay )
half3 cIn : TEXCOORD1; // In-scatter coefficient
half3 cOut : TEXCOORD2; // Out-scatter coefficient
};
float scale(float inCos)
{
float x = 1.0 - inCos;
return 0.25 * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
v2f vert (appdata_t v)
{
v2f OUT;
OUT.pos = UnityObjectToClipPos(v.vertex);
float3 cameraPos = float3(0,kInnerRadius + kCameraHeight,0); // The camera's current position
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
float3 eyeRay = normalize(mul((float3x3)unity_ObjectToWorld, v.vertex.xyz));
OUT.rayDir = half3(-eyeRay);
float far = 0.0;
if(eyeRay.y >= 0.0)
{
// Sky
// Calculate the length of the "atmosphere"
far = sqrt(kOuterRadius2 + kInnerRadius2 * eyeRay.y * eyeRay.y - kInnerRadius2) - kInnerRadius * eyeRay.y;
float3 pos = cameraPos + far * eyeRay;
// Calculate the ray's starting position, then calculate its scattering offset
float height = kInnerRadius + kCameraHeight;
float depth = exp(kScaleOverScaleDepth * (-kCameraHeight));
float startAngle = dot(eyeRay, cameraPos) / height;
float startOffset = depth*scale(startAngle);
// Initialize the scattering loop variables
float sampleLength = far / kSamples;
float scaledLength = sampleLength * kScale;
float3 sampleRay = eyeRay * sampleLength;
float3 samplePoint = cameraPos + sampleRay * 0.5;
// Now loop through the sample rays
float3 frontColor = float3(0.0, 0.0, 0.0);
// WTF BBQ: WP8 and desktop FL_9_1 do not like the for loop here
// (but an almost identical loop is perfectly fine in the ground calculations below)
// Just unrolling this manually seems to make everything fine again.
// for(int i=0; i<int(kSamples); i++)
{
float height = length(samplePoint);
float depth = exp(kScaleOverScaleDepth * (kInnerRadius - height));
float lightAngle = dot(_WorldSpaceLightPos0.xyz, samplePoint) / height;
float cameraAngle = dot(eyeRay, samplePoint) / height;
float scatter = (startOffset + depth*(scale(lightAngle) - scale(cameraAngle)));
float3 attenuate = exp(-scatter * (kInvWavelength * kKr4PI + kKm4PI));
frontColor += attenuate * (depth * scaledLength);
samplePoint += sampleRay;
}
{
float height = length(samplePoint);
float depth = exp(kScaleOverScaleDepth * (kInnerRadius - height));
float lightAngle = dot(_WorldSpaceLightPos0.xyz, samplePoint) / height;
float cameraAngle = dot(eyeRay, samplePoint) / height;
float scatter = (startOffset + depth*(scale(lightAngle) - scale(cameraAngle)));
float3 attenuate = exp(-scatter * (kInvWavelength * kKr4PI + kKm4PI));
frontColor += attenuate * (depth * scaledLength);
samplePoint += sampleRay;
}
// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
OUT.cIn.xyz = frontColor * (kInvWavelength * kKrESun);
OUT.cOut = frontColor * kKmESun;
}
else
{
// Ground
far = (-kCameraHeight) / (min(-0.00001, eyeRay.y));
float3 pos = cameraPos + far * eyeRay;
// Calculate the ray's starting position, then calculate its scattering offset
float depth = exp((-kCameraHeight) * (1.0/kScaleDepth));
float cameraAngle = dot(-eyeRay, pos);
float lightAngle = dot(_WorldSpaceLightPos0.xyz, pos);
float cameraScale = scale(cameraAngle);
float lightScale = scale(lightAngle);
float cameraOffset = depth*cameraScale;
float temp = (lightScale + cameraScale);
// Initialize the scattering loop variables
float sampleLength = far / kSamples;
float scaledLength = sampleLength * kScale;
float3 sampleRay = eyeRay * sampleLength;
float3 samplePoint = cameraPos + sampleRay * 0.5;
// Now loop through the sample rays
float3 frontColor = float3(0.0, 0.0, 0.0);
float3 attenuate;
for(int i=0; i<int(kSamples); i++)
{
float height = length(samplePoint);
float depth = exp(kScaleOverScaleDepth * (kInnerRadius - height));
float scatter = depth*temp - cameraOffset;
attenuate = exp(-scatter * (kInvWavelength * kKr4PI + kKm4PI));
frontColor += attenuate * (depth * scaledLength);
samplePoint += sampleRay;
}
OUT.cIn.xyz = frontColor * (kInvWavelength * kKrESun + kKmESun);
OUT.cOut.xyz = clamp(attenuate, 0.0, 1.0);
}
return OUT;
}
// Calculates the Mie phase function
half getMiePhase(half eyeCos, half eyeCos2)
{
half temp = 1.0 + MIE_G2 - 2.0 * MIE_G * eyeCos;
// A somewhat rough approx for :
// temp = pow(temp, 1.5);
temp = smoothstep(0.0, 0.01, temp) * temp;
temp = max(temp,1.0e-4); // prevent division by zero, esp. in half precision
return 1.5 * ((1.0 - MIE_G2) / (2.0 + MIE_G2)) * (1.0 + eyeCos2) / temp;
}
// Calculates the Rayleigh phase function
half getRayleighPhase(half eyeCos2)
{
return 0.75 + 0.75*eyeCos2;
}
half4 frag (v2f IN) : SV_Target
{
half3 col;
if(IN.rayDir.y < 0.0)
{
half eyeCos = dot(_WorldSpaceLightPos0.xyz, normalize(IN.rayDir.xyz));
half eyeCos2 = eyeCos * eyeCos;
col = getRayleighPhase(eyeCos2) * IN.cIn.xyz + getMiePhase(eyeCos, eyeCos2) * IN.cOut * _LightColor0.xyz * _SunTint * _SunStrength;
}
else
{
col = IN.cIn.xyz + _GroundColor * IN.cOut;
}
//Adjust color from HDR
col *= _HdrExposure;
return half4(col,1.0);
}
ENDCG
}
}
Fallback Off
}